The equations are written in rectangular coordinates . 這些方程是在直角座標(biāo)系中寫出的。
In fig. 6-1(c), the motion of a particle is referred to by a rectangular coordinate system . 在圖6-1(c)中,質(zhì)點(diǎn)的運(yùn)動(dòng)是用直角坐標(biāo)系來描述的。
Rectangular coordinate type potentiometer 直角坐標(biāo)式電位差計(jì)
In fig . 6 - 1 ( c ) , the motion of a particle is referred to by a rectangular coordinate system 在圖6 - 1 ( c )中,質(zhì)點(diǎn)的運(yùn)動(dòng)是用直角坐標(biāo)系來描述的。
For overcoming nonsmooth of temperature field , temperature field equations in subdomains are built respectively in rectangular coordinate and in cylindrical coordinate . based on the numerical simulation algorithm in this paper , numerical results for temperature field are given and analyzed 基于我們構(gòu)造的三維溫度場(chǎng)數(shù)值模擬算法,給出了變壓器運(yùn)行過程中溫度場(chǎng)在空間與時(shí)間分布的數(shù)值結(jié)果,并對(duì)所得到的數(shù)值結(jié)果進(jìn)行了分析。
The mechanism is based on the 4 - axis rectangular coordinate system . the driven mode of x - axis is proportional pneumatic - servo control system ; y - axis is driven by a digital ac servomotor ; z - axis is driven by a linear cylinder ; the driven mode of the axis of r is same to that of y - axis X軸采用基于比例伺服技術(shù)的氣動(dòng)驅(qū)動(dòng); y軸采用全數(shù)字交流電機(jī)伺服驅(qū)動(dòng); z軸則采用直線氣缸驅(qū)動(dòng);而r軸采用與y軸相同的驅(qū)動(dòng)方式,同時(shí)其前端安裝了真空吸盤,用于抓取工件。
The contents of the course include the elastic problems and associated solution procedure ; the basic concepts and assumptions of elasticity ; the solution of a planar elastic problem defined in a rectangular coordinate ; the matrix expression of basic equations of a planar elastic problem ; the solution of a planar problem defined in a polar coordinate ; the basic equations and solution procedure of a three - dimensional elastic problem ; bending of a plate ; and the variational principles of energy 本課程的主要內(nèi)容包括:彈性力學(xué)問題及其求解思想;彈性力學(xué)中的基本概念及基本假定;彈性力學(xué)平面問題的直角坐標(biāo)解答;平面問題基本方程的矩陣表示;平面問題的極坐標(biāo)解答;彈性力學(xué)空間問題的基本方程及其解法;薄板的彎曲;能量變分原理等等
This paper is composed of two parts including 5 chapters . in the first part ( including chapter 2 ^ 3 ) , this paper explains an improved geometry - model method to eliminating eclipse shadow , using satellite imaging theory and projection theory to convert plane rectangular coordinates into rectangular spherical coordinates . otherwise , through studying eclipse ' s shape and size , this paper uses a math - function - model to eliminating eclipse shadow 本文共有五章,主要內(nèi)容分為兩部分;第一部分包括第二、三章的內(nèi)容,利用可見光云圖成像原理以及點(diǎn)的投影法,將平面云圖投影到三維直角坐標(biāo)的球面上,對(duì)用于云圖陰影訂正的原幾何模型法加以改進(jìn),得到改進(jìn)的幾何模型法,并進(jìn)行日食陰影訂正實(shí)驗(yàn);本文還利用數(shù)學(xué)函數(shù)模型法,通過研究月球在地球表面投射陰影的形狀及其受影響程度,從另一方面進(jìn)行可見光云圖日食陰影的訂正實(shí)驗(yàn)研究。
Under the circumstance that the camera is moving , the tracking rectangular coordinates are founded , and the relationship between the tracking rectangular coordinates and the forecast rectangular coordinates is given . the angle control formula of the camera & pan - tilt - device system is educed with its vision coordinates , which provides theory basis for moving vehicle tracking 在攝像機(jī)運(yùn)動(dòng)情況下,建立了運(yùn)動(dòng)車輛跟蹤坐標(biāo)系,并得出了運(yùn)動(dòng)車輛跟蹤坐標(biāo)系與預(yù)測(cè)坐標(biāo)系之間的轉(zhuǎn)換關(guān)系;通過攝像機(jī)-云臺(tái)系統(tǒng)所采用的視覺坐標(biāo)系,推導(dǎo)出了攝像機(jī)-云臺(tái)系統(tǒng)轉(zhuǎn)動(dòng)的角度控制公式,為運(yùn)動(dòng)車輛的跟蹤提供了理論基礎(chǔ)。
If applied experiential formula mechanically to calculate the dynamic moment of the tri - eccentric butterfly vavle , its errors for the results would be larger . the paper , by virtue of the postulate of flow with fixed constant , eddiless of ideal liquid , calculated laplace equation by finite difference method in rectangular coordinates , gained pressure distribution on the butterfly disc section , thereby figured out its dynamic moment under each opening angle and the method was feasible for calculating dynamic moment of symmetry or not , designed the program and described the curve of dynamic moment . finally , the paper infered their laws 采用經(jīng)驗(yàn)公式來計(jì)算三偏心蝶閥的動(dòng)水力矩,誤差比較大,本文根據(jù)三偏心蝶閥的結(jié)構(gòu)特點(diǎn),利用理想流體的定常、無旋流動(dòng)的假定,用有限差分法在直角坐標(biāo)系中求解拉普拉斯方程,得到蝶板截面上的壓力分布,從而計(jì)算出蝶板在各個(gè)開度下的動(dòng)水力矩,設(shè)計(jì)出了求解的程序,給出了程序運(yùn)行的結(jié)果并進(jìn)行了數(shù)據(jù)處理從而得到了動(dòng)水力矩曲線,總結(jié)了它的變化規(guī)律。